SOMA Cryptography Whitepaper

EAiNnsTaNzA

Draft date: Nov. 1st, 2015

Contents

Overview

Secure Transport Layer Protocol
AES256 Key Generation
Login Data Verification
Secure Transport Layer Establishment
Data Transportation

Message Encryption

Elliptic Curve Key Pair

End-to-End Encryption (E2EE)

Media Data

Server Side Encryption & Persistence
VOIP

Group Message

Address Book Synchronization

Authentication Process
Notification Data Security

Android
iPhone

© © ©O©W O 00N OO O oo o ;O & b WWLWWDN

Overview

SOMA Messenger is the latest product of Instanza Inc., a privately held American technology
company headquartered in San Francisco, California.

Focusing on privacy protection and security, SOMA’s goal is to provide the most secure and
enjoyable instant message experience.

All messages (text, photo, video, etc.) between sender and recipient use End-to-End Encryption
(E2EE) by default. Under this design, even engineers at SOMA can not decrypt the messages.

In this paper, the design and algorithms behind the cryptography are explained in details.

EAinsTAaNZA 5

Secure Transport Layer Protocol

SOMA use customized binary transport protocol between client and server to reduce the
transport traffic, and the communication is encrypted by OpenSSL.

Each time client will generate a new AES key to encrypt message, AES key then send to the
server encrypted by RSA pubkey from server, finally server verify the data by doing the SHA
check.

Login Data

SOMA :
RSA-2048 Public Key AESKEY (256-Bit) uiD TOKEN SALT
| |

AES256 CBC
Encryption
RSA Encrypted :
MD5 AESKEY Encrypted Login Data SHA-1

TCP

AES256 Key Generation

When need to establish a secure transport layer, client will need to generate a 256 bits AES
key, then send the key encrypted by the RSA-2048 public key delivered by SOMA (which
initially saved in device through application installation). When sending encrypted AES 256 key
to server, client always append a md5 hash of RSA-2048 public key to indicate server which
pubkey is now using.

Login Data Verification

SOMA server uses Login Data to verify user’s identity, the Login Data includes UID, User
Token, AES256 key and a salt (Salt is generated by server per-connection. Client requests for
random salt before sending login data to server). Client then encrypts the Login Data with 256
bits AES key generated above, summarizes the Login Data with SHA-1 algorithm, and sends all
the informations to the server.

EAiNnsTaNzA 3

Secure Transport Layer Establishment

After server receives data above:

1. get the corresponding RSA-2048 private key through md5 of the pubkey.

2. use the private to decrypt and get user's AES256 key.

3. use AES256 key to encrypt and get user’s Login Data.

4. verify user’s Login Data with SHA-1 summary provided.
After transport layer established, all data in this tunnel will encrypt by the AES 256 key (using
CBC mode).

Data Transportation

Now client and server share the same AESKEY.
When data needs to transfer to other side:
1. encrypt it by the AESKEY (using CBC mode)
2. append the SHA-1 summary of data
When data transferred to other side:
1. decrypt it by the AESKEY (using CBC mode)
2. verify the decrypted data by SHA-1

EAinsTAaNzA

Message Encryption

Every kinds of messages (include plain text, location info, media files such as audio, images,
videos) are encrypted with combination of elliptic curve key pair and AES 256 key.

Elliptic Curve Key Pair

When user registers, client generates elliptic curve key pairs by:
1. choose a private key by random
2. store private key securely in the client
3. calculate the corresponding public key over the Elliptic Curve (Curve25519)
4. send public key to the server

User can easily query others’ elliptic curve public key from server if needed.

Client re-generates the elliptic curve key pair and updates the public key to the server
periodically.

The key pair will be physically deleted as soon as user deletes his SOMA account.

EC Public Keys store in cloud
Bob’s Alice’s
EC Public Key EC Public Key
Alice’s Bob’s
EC Private Key EC Private Key
l

Message AESKEY (256-Bit) ool AESKEY (256-Bit) Message

AES256 CBC AES256 CBC
Encryption Decryption

Delivered
Encrypted Message

Encrypted Message >
e = Secure Transport Layer Protocol

I I |

NOTE:
The encrypted message will send to Bob immediately. Or it'll be stored in server if Bob not online.
Server will delete the message once it's delivered or not received in 7 days.

EAiNnsTaNzA 5

End-to-End Encryption (E2EE)

Using end-to-end encryption, users can make sure they are communicating with exactly the one
they expect. Each sending message is encrypted by a 256 bits AES key and random generated
IV Key. The 256 bits AES key is generated by elliptic curve private key of sender and elliptic
curve public key of recipient.

The message will send to recipient immediately, or store inside SOMA server’s if recipient not
online (see Server Side Encryption & Persistence). Server will delete the message once it's
delivered or not received in 7 days.

Since EC public & private key is mathematically related, recipient can calculate the 256 bits
AES key using his private key and sender’s public key.

Media Data

To encrypt a media file, one 256 bits AES key is chosen by random. Then the encrypted media
file is uploaded to server through HTTPS. Server will return a media file url when upload
finished. After that, sender sends the 256 bits AES key and the url in the same way they send
E2EE message. When recipients receive the 256 bits key and the url, they:

1. download the encrypted media file from url through HTTPS

2. decrypt the media file by 256 bits AES key

3. store media file securely in the client

4. send a request to delete the uploaded media file in server side

Server Side Encryption & Persistence

Server generates random EC key pair every seconds, and use the E2EE mechanism to store
the data in secure (server only keeps elliptic curve public key and encrypted data, which can
only decrypted together with recipient’s elliptic curve private key). Hackers can do nothing to the
encrypted message even if they invade the databases.

Media Messages are encrypted by 256 bits AES key from sender, whose key is never stored in
the server side, to ensure the media file can not be decrypted even hackers get it.

VOIP

Normally, a voip communication between users in same country establishes over P2P
(peer-to-peer), data will not transfer through the relay servers. For better quality, when
long-distance transnational communication happens, VOIP data will pass by our relay servers.
All VOIP data is encrypted by AES, and the key for encryption is generated temporarily each
VOIP call.

EAinsTAaNzA 6

Group Message

SOMA uses secure transport layer to transfer group message to server instead of E2EE. After
message is transmitted to server, it is encrypted by a 256 bits AES key and random generated
IV Key. The 256 bits AES key is generated by EC private key in server memory and EC public
key of each recipient. Then the encrypted message together with EC public key inside memory
again encrypted by the AES 256 key which is exchanged during previous transport layer

establishment.

Alice’s
Group Message

Group Chat Server

AESKEY
(256-Blit, for Bob)

Y

AES256 CBC
Encryption

Encrypted Message AESKEY «
_ (for Bob) (256-Bit, for Frank)
=
| "
|]
AES256 CBC AESKEY
Decryption (256-Bit, for Bob)
Message

EAiNnsTaNzA

I
AESKEY
S
-«

-

Group Members

Random EC Public Keys

EC Key Pair
Bob’s

Random EC Public Key
EC Private Key
Random Carol's

EC Public Key

EC Public Key

Frank’s
EC Public Key

...I I

NOTE:
Server generate Random EC Key Pair
every seconds.

Bob’s
EC Private Key

The random EC key pair generated every second stays in server memory, which won’t save to
persistent storage.

Why we don’t use E2EE when sending a group message

Mainly on account of the traffic problem. Let’s suppose a 300 bytes group message, and a
500-person group (we will support larger group later). It will cost sender 300*500=146.48 KByte
traffic to send the message to every recipients, which would drastically consume user’s cellular
data, also slow down message distribution speed.

Address Book Synchronization

Address book uploaded to server is one-way hashed by HMAC SHA256.
We need hashed address book to:
1. match and notify user if members inside address book join SOMA
2. share online status with others (only allow friends inside address book to see online
status)

EAinsTAaNzA 8

Authentication Process

The client generates a GUID during registration. Server encrypts the GUID using AES
encryption, then store the SHA hash result inside database.

While client asks for authentication, server will check the hash. This avoid weak password
problem, hackers cannot counterfeit user simply after obtaining the password of an account.

Notification Data Security

Android

SOMA server uses GCM Push when client offline, using the same mechanism of message
sending to SOMA (with AES + EC/E2EE).

iPhone

Only use APNS when user offline, to notify user there is a new message (without detail).

Those mechanism ensures notification data security, avoids the risks of message leaking
through third-party systems.

EAinsTAaNzA

